
NAG C Library Function Document

nag_opt_sparse_convex_qp_solve (e04nqc)

Note: this function uses optional arguments to define choices in the problem specification and in the details of
the algorithm. If you wish to use default settings for all of the optional arguments, you need only read Sections
1 to 9 of this document. Refer to the additional Sections 10, 11 and 12 for a detailed description of the
algorithm, the specification of the optional arguments and a description of the monitoring information produced
by the function.

1 Purpose

nag_opt_sparse_convex_qp_solve (e04nqc) solves sparse linear programming or convex quadratic
programming problems. The initialization function nag_opt_sparse_convex_qp_init (e04npc) must have
been called prior to calling nag_opt_sparse_convex_qp_solve (e04nqc).

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_sparse_convex_qp_solve (Nag_Start start,

void (*qphx)(Integer ncolh, const double x[], double hx[], Integer nstate,
Nag_Comm *comm),

Integer m, Integer n, Integer ne, Integer nname, Integer lenc, Integer ncolh,
Integer iobj, double objadd, const char *prob, const double acol[],
const Integer inda[], const Integer loca[], const double bl[],
const double bu[], const double c[], const char *names[],
const Integer helast[], Integer hs[], double x[], double pi[], double rc[],
Integer *ns, Integer *ninf, double *sinf, double *obj, Nag_E04State *state,
Nag_Comm *comm, NagError *fail)

Before calling nag_opt_sparse_convex_qp_solve (e04nqc) or one of the option setting functions
nag_opt_sparse_convex_qp_option_set_file (e04nrc), nag_opt_sparse_convex_qp_option_set_string
(e04nsc), nag_opt_sparse_convex_qp_option_set_integer (e04ntc) or
nag_opt_sparse_convex_qp_option_set_double (e04nuc), nag_opt_sparse_convex_qp_init (e04npc) must
be called. The specification for nag_opt_sparse_convex_qp_init (e04npc) is:

void nag_opt_sparse_convex_qp_init (Nag_E04State *state, NagError *fail)

After calling nag_opt_sparse_convex_qp_solve (e04nqc) you can call one or both of the functions
nag_opt_sparse_convex_qp_option_get_integer (e04nxc) or nag_opt_sparse_convex_qp_option_get_double
(e04nyc) to obtain the current value of an optional argument.

3 Description

nag_opt_sparse_convex_qp_solve (e04nqc) is designed to solve large scale linear or quadratic
programming problems that are assumed to be stated in the following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u, ð1Þ

where x is a set of n variables, l and u are constant lower and upper bounds, and A is a sparse matrix and
f xð Þ is a linear or quadratic objective function that may be specified in a variety of ways, depending upon
the particular problem being solved. The option Maximize (see Section 11.2) may be used to specify a
problem in which f xð Þ is maximized instead of minimized.

Upper and lower bounds are specified for all variables and constraints. This form allows full generality in
specifying various types of constraint. In particular, the jth constraint may be defined as an equality by

e04 – Minimizing or Maximizing a Function e04nqc

[NP3660/8] e04nqc.1



setting lj ¼ uj. If certain bounds are not present, the associated elements of l or u may be set to special
values that are treated as �1 or þ1.

The possible forms for the function f xð Þ are summarized in Table 1. The most general form for f xð Þ is

f xð Þ ¼ qþ cTxþ 1

2
xTHx ¼ qþ

Xn
j¼1

cjxj þ
1

2

Xn
i¼1

Xn
j¼1

xiHijxj

where q is a constant, c is a constant n vector and H is a constant symmetric n by n matrix with elements
Hij

� �
. In this form, f is a quadratic function of x and (1) is known as a quadratic program (QP).

nag_opt_sparse_convex_qp_solve (e04nqc) is suitable for all convex quadratic programs. The defining

feature of a convex QP is that the matrix H must be positive semi-definite, i.e., it must satisfy xTHx � 0
for all x. If not, f xð Þ is nonconvex and nag_opt_sparse_convex_qp_solve (e04nqc) will terminate with the
error indicator fail.code ¼ NE_HESS_INDEF. If f xð Þ is nonconvex it may be more appropriate to call
nag_opt_sparse_nlp_solve (e04vhc) instead.

Problem type Objective function f xð Þ Hessian matrix H

FP Not applicable q ¼ c ¼ H ¼ 0

LP qþ cTx H ¼ 0

QP qþ cTxþ 1
2x

THx Symmetric positive semi-definite

Table 1
Choices for the objective function f xð Þ

If H ¼ 0, then f xð Þ ¼ qþ cTx and the problem is known as a linear program (LP). In this case, rather
than defining an H with zero elements, you can define H to have no columns by setting ncolh ¼ 0 (see
Section 5).

If H ¼ 0, q ¼ 0, and c ¼ 0, there is no objective function and the problem is a feasible point problem
(FP), which is equivalent to finding a point that satisfies the constraints on x. In the situation where no
feasible point exists, several options are available for finding a point that minimizes the constraint
violations (see the option Elastic Mode in Section 11.2).

nag_opt_sparse_convex_qp_solve (e04nqc) is suitable for large LPs and QPs in which the matrix A is
sparse, i.e., when there are sufficiently many zero elements in A to justify storing them implicitly. The
matrix A is input to nag_opt_sparse_convex_qp_solve (e04nqc) by means of the three array arguments
acol, inda and loca. This allows you to specify the pattern of non-zero elements in A.

nag_opt_sparse_convex_qp_solve (e04nqc) exploits structure or sparsity in H by requiring H to be defined
implicitly in a function that computes the product Hx for any given vector x. In many cases, the product
Hx can be computed very efficiently for any given x, e.g., H may be a sparse matrix, or a sum of matrices
of rank-one.

For problems in which A can be treated as a dense matrix, it is usually more efficient to use nag_opt_lp
(e04mfc), nag_opt_lin_lsq (e04ncc) or nag_opt_qp (e04nfc).

There is considerable flexibility allowed in the definition of f xð Þ in Table 1. The vector c defining the

linear term cTx can be input in three ways: as a sparse row of A; as an explicit dense vector c; or as both a

sparse row and an explicit vector (in which case, cTx will be the sum of two linear terms). When stored in
A, c is the iobjth row of A, which is known as the objective row. The objective row must always be a free
row of A in the sense that its lower and upper bounds must be �1 and þ1. Storing c as part of A is
recommended if c is a sparse vector. Storing c as an explicit vector is recommended for a sequence of
problems, each with a different objective (see arguments c and lenc).

The upper and lower bounds on the m elements of Ax are said to define the general constraints of the
problem. Internally, nag_opt_sparse_convex_qp_solve (e04nqc) converts the general constraints to

equalities by introducing a set of slack variables s, where s ¼ s1; s2; . . . ; smð ÞT. For example, the linear
constraint 5 � 2x1 þ 3x2 � þ1 is replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack
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5 � s1 � þ1. The problem defined by (1) can therefore be re-written in the following equivalent form:

minimize
x2Rn;s2Rm

f xð Þ subject to Ax� s ¼ 0, l � x
s

� �
� u.

Since the slack variables s are subject to the same upper and lower bounds as the elements of Ax, the
bounds on x and Ax can simply be thought of as bounds on the combined vector x; sð Þ. (In order to
indicate their special role in QP problems, the original variables x are sometimes known as ‘column
variables’, and the slack variables s are known as ‘row variables’.)

Each LP or QP problem is solved using an active-set method. This is an iterative procedure with two
phases: a feasibility phase (Phase 1), in which the sum of infeasibilities is minimized to find a feasible
point; and an optimality phase (Phase 2), in which f xð Þ is minimized (or maximized) by constructing a
sequence of iterations that lies within the feasible region.

Phase 1 involves solving a linear program of the form

Phase 1

minimize
x;v;w

Xnþm

j¼1

vj þ wj

� �
subject to Ax� s ¼ 0, ‘ � x

s

� �
�vþ w � u, v � 0, w � 0

which is equivalent to minimizing the sum of the constraint violations. If the constraints are feasible (i.e.,
at least one feasible point exists), eventually a point will be found at which both v and w are zero. The
associated value of x; sð Þ satisfies the original constraints and is used as the starting point for the Phase 2
iterations for minimizing f xð Þ.
If the constraints are infeasible (i.e., v 6¼ 0 or w 6¼ 0 at the end of Phase 1), no solution exists for (1) and
you have the option of either terminating or continuing in so-called Elastic mode (see the discussion of the
option Elastic Mode in Section 11.2). In elastic mode, a ‘relaxed’ or ‘perturbed’ problem is solved in
which f xð Þ is minimized while allowing some of the bounds to become ‘elastic’, i.e., to change from their
specified values. Variables subject to elastic bounds are known as elastic variables. An elastic variable is
free to violate one or both of its original upper or lower bounds. You are able to assign which bounds will
become elastic if elastic mode is ever started (see the argument helast in Section 5).

To make the relaxed problem meaningful, nag_opt_sparse_convex_qp_solve (e04nqc) minimizes f xð Þ
while (in some sense) finding the ‘smallest’ violation of the elastic variables. In the situation where all the
variables are elastic, the relaxed problem has the form

Phase 2 (�)

minimize
x;v;w

f xð Þ þ �
Xnþm

j¼1

vj þ wj

� �
subject to Ax� s ¼ 0, ‘ � x

s

� �
� vþ w � u, v � 0, w � 0,

where � is a non-negative argument known as the elastic weight (see the option Elastic Weight in
Section 11.2), and f xð Þ þ �

P
j

vj þ wj

� �
is called the composite objective. In the more general situation

where only a subset of the bounds are elastic, the v’s and w’s for the non-elastic bounds are fixed at zero.

The elastic weight can be chosen to make the composite objective behave like either the original objective
f xð Þ or the sum of infeasibilities. If � ¼ 0, nag_opt_sparse_convex_qp_solve (e04nqc) will attempt to
minimize f subject to the (true) upper and lower bounds on the non-elastic variables (and declare the
problem infeasible if the non-elastic variables cannot be made feasible).

At the other extreme, choosing � sufficiently large, will have the effect of minimizing the sum of the
violations of the elastic variables subject to the original constraints on the non-elastic variables. Choosing
a large value of the elastic weight is useful for defining a ‘least-infeasible’ point for an infeasible problem.

In Phase 1 and elastic mode, all calculations involving v and w are done implicitly in the sense that an
elastic variable xj is allowed to violate its lower bound (say) and an explicit value of v can be recovered as
vj ¼ lj � xj.

A constraint is said to be active or binding at x if the associated element of either x or Ax is equal to one of
its upper or lower bounds. Since an active constraint in Ax has its associated slack variable at a bound, the
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status of both simple and general upper and lower bounds can be conveniently described in terms of the
status of the variables x; sð Þ. A variable is said to be nonbasic if it is temporarily fixed at its upper or
lower bound. It follows that regarding a general constraint as being active is equivalent to thinking of its
associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax� s ¼ 0 are (conceptually) partitioned into the
form

BxB þ SxS þ NxN ¼ 0,

where xN consists of the nonbasic elements of x; sð Þ and the basis matrix B is square and non-singular.
The elements of xB and xS are called the basic and superbasic variables respectively; with xN they are a
permutation of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their upper or lower bounds, while the nonbasic variables will be equal to one of their
bounds. At each iteration, xS is regarded as a set of independent variables that are free to move in any
desired direction, namely one that will improve the value of the objective function (or sum of
infeasibilities). The basic variables are then adjusted in order to ensure that x; sð Þ continues to satisfy
Ax� s ¼ 0. The number of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS is a measure of how
nonlinear the problem is. In particular, nS will always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one. At
all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic and
the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ 0 is a dual variable �i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced

gradients for the variables x are the quantities g � AT�, where g is the gradient of the QP objective
function; and the reduced gradients for the slack variables s are the dual variables �. The QP subproblem
is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all nonbasic variables at
their upper bounds and dj ¼ 0 for all superbasic variables. In practice, an approximate QP solution is
found by slightly relaxing these conditions on dj (see the description of the option Optimality Tolerance
in Section 11.2).

The process of computing and comparing reduced gradients is known as pricing (a term first introduced in
the context of the simplex method for linear programming). To ‘price’ a nonbasic variable xj means that
the reduced gradient dj associated with the relevant active upper or lower bound on xj is computed via the

formula dj ¼ gj � aTj �, where aj is the jth column of A �Ið Þ. (The variable selected by such a process
and the corresponding value of dj (i.e., its reduced gradient) are the quantities +SBS and dj in the
monitoring file output; see Section 12.) If A has significantly more columns than rows (i.e., n � m),
pricing can be computationally expensive. In this case, a strategy known as partial pricing can be used to
compute and compare only a subset of the djs.

nag_opt_sparse_convex_qp_solve (e04nqc) is based on SQOPT, which is part of the SNOPT package
described in Gill et al. (1999). It uses stable numerical methods throughout and includes a reliable basis
package (for maintaining sparse LU factors of the basis matrix B), a practical anti-degeneracy procedure,
efficient handling of linear constraints and bounds on the variables (by an active-set strategy), as well as
automatic scaling of the constraints. Further details can be found in Section 10.

4 References

Fourer R (1982) Solving staircase linear programs by the simplex method Math. Programming 23 274–313

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

Gill P E, Murray W and Saunders M A (1995) User’s guide for QPOPT 1.0: a Fortran package for
quadratic programming Report SOL 95-4 Department of Operations Research, Stanford University
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Gill P E, Murray W, Saunders M A and Wright M H (1987) Maintaining LU factors of a general sparse
matrix Linear Algebra and its Applics. 88/89 239–270

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for linearly
constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Hall J A J and McKinnon K I M (1996) The Simplest Examples where the Simplex Method Cycles and
Conditions where EXPAND Fails to Prevent Cycling Report MS 96–100 Department of Mathematics and
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5 Arguments

The first n entries of the arguments bl, bu, hs and x refer to the variables x. The last m entries refer to the
slacks s.

1: start – Nag_Start Input

On entry: indicates how a starting basis (and certain other items) are to be obtained.

start ¼ Nag_Cold (Cold Start)

Requests that the Crash procedure be used to choose an initial basis, unless a basis file is
provided via option Old Basis File, Insert File or Load File (see Section 11.2).

start ¼ Nag_BasisFile

Is the same as start ¼ Nag_Cold but is more meaningful when a basis file is given.

start ¼ Nag_Warm (Warm Start)

Means that a basis is already defined in hs (probably from an earlier call).

Constraint: start ¼ Nag_BasisFile, Nag_Cold or Nag_Warm.

2: qphx – function, supplied by the user External Function

For QP problems, you must supply a version of qphx to compute the matrix product Hx for the
given vector x. If H has rows and columns of zeros, it is most efficient to order the variables

x ¼ y zð ÞT so that

Hx ¼ H1 0
0 0

� �
y
z

� �
¼ H1y

0

� �
,

where the nonlinear variables y appear first as shown. The number of columns of H1 is specified in
ncolh. For FP and LP problems, qphx will never be called by nag_opt_sparse_convex_qp_solve
(e04nqc) and hence qphx may be specified as NULL.

Its specification is:

void qphx (Integer ncolh, const double x[], double hx[], Integer nstate,
Nag_Comm *comm)

1: ncolh – Integer Input

On entry: this is the same argument ncolh as supplied to
nag_opt_sparse_convex_qp_solve (e04nqc).

2: x½ncolh� – const double Input

On entry: the first ncolh elements of the vector x.
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3: hx½ncolh� – double Output

On exit: the product Hx.

4: nstate – Integer Input

On entry: if nstate ¼ 1, then nag_opt_sparse_convex_qp_solve (e04nqc) is calling qphx
for the first time. This argument setting allows you to save computation time if certain
data must be read or calculated only once. To preserve this data for a subsequent
calculation place it in comm (below).

If nstate ¼ 0 there is nothing special about the current call of qphx.

If nstate � 2, then nag_opt_sparse_convex_qp_solve (e04nqc) is calling qphx for the last
time. This argument setting allows you to perform some additional computation on the
final solution. On the last call of qphx, if nstate ¼ 2, the current x is optimal; if
nstate ¼ 3, the problem appears to be infeasible; if nstate ¼ 4, the problem appears to be
unbounded; and if nstate ¼ 5, the iterations limit was reached.

5: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to qphx.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_sparse_convex_qp_solve
(e04nqc) these pointers may be allocated memory by the user and initialized with
various quantities for use by qphx when called from
nag_opt_sparse_convex_qp_solve (e04nqc).

3: m – Integer Input

On entry: m, the number of general linear constraints (or slacks). This is the number of rows in A,
including the free row (if any; see iobj below).

Constraint: m � 1.

4: n – Integer Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the linear
constraint matrix A.

Constraint: n � 1.

5: ne – Integer Input

On entry: the number of non-zero elements in A.

Constraint: 1 � ne � n�m.

6: nname – Integer Input

On entry: the number of column (i.e., variable) and row names supplied in the array names.

nname ¼ 1

There are no names. Default names will be used in the printed output.

nname ¼ nþm

All names must be supplied.

Constraint: nname ¼ 1 or nþm.
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7: lenc – Integer Input

On entry: the number of elements in the constant objective vector c.

Constraint: 0 � lenc � n.

8: ncolh – Integer Input

On entry: nH , the number of leading non-zero columns of the Hessian matrix H . For FP and LP
problems, ncolh must be set to zero.

Constraint: 0 � ncolh � n.

9: iobj – Integer Input

On entry: if iobj > 0, row iobj of A is a free row containing the non-zero elements of the vector c

appearing in the linear objective term cTx.

If iobj ¼ 0, there is no free row, i.e., the problem is either an FP problem, or a QP problem with
c ¼ 0.

Constraint: 0 � iobj � m.

10: objadd – double Input

On entry: the constant q, to be added to the objective for printing purposes. Typically
objadd ¼ 0:0.

11: prob – const char * Input

On entry: the name for the problem. It is used in the printed solution and in some functions that
output basis files. Only the first eight characters of prob are significant.

12: acol½ne� – const double Input

On entry: the non-zero elements of A, ordered by increasing column index. Note that all elements
must be assigned a value in the calling program.

13: inda½ne� – const Integer Input

On entry: inda½i� 1� must contain the row index of the non-zero element stored in acol½i� 1�, for
i ¼ 1; 2; . . . ; ne. Thus a pair of values acol½k � 1�; inda½k � 1�ð Þ contains a matrix element and its
corresponding row index.

If lenc > 0, the first lenc elements of acol and inda belong to variables corresponding to the
constant objective term c.

If the problem has a quadratic objective, the first ncolh columns of acol and inda belong to
variables corresponding to the non-zero block of the QP Hessian. Function qphx knows about
these variables.

Note that the row indices for a column must lie in the range 1 to m, and may be supplied in any
order.

Constraint: 1 � inda½i� 1� � m, for i ¼ 1; 2; . . . ;ne.

14: loca½nþ 1� – const Integer Input

On entry: loca½j� 1� must contain the value pþ 1, where p is the index in acol and inda of the start
of the jth column, for j ¼ 1; 2; . . . ;n. Thus, the entries of column j are held in acol½i�, and their
corresponding row indices are in inda½i�, for i ¼ k � 1; k; . . . ; l � 1, where k ¼ loca½j� 1� and
l ¼ loca½j� � 1. To specify the jth column as empty, set loca½j� 1� ¼ loca½j�. Note that the first and
last elements of loca must be such that loca½0� ¼ 1 and loca½n� ¼ neþ 1. If your problem has no
constraints, or just bounds on the variables, you may include a dummy ‘free’ row with a single
(zero) element by setting acol½0� ¼ 0:0, inda½0� ¼ 1, loca½0� ¼ 1, and loca½j� 1� ¼ 2, for
j ¼ 1; 2 . . . ; n. This row is made ‘free’ by setting its bounds to be bl½nþ 1� ¼ �bigbnd and
bu½nþ 1� ¼ bigbnd.
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Constraints:

loca½0� ¼ 1;
loca½j� � 1, for j ¼ 1; 2; . . . ; n� 1;
loca½n� ¼ neþ 1;
0 � loca½jþ 1� � loca½j� � m, for j ¼ 0; 1; . . . ;n� 1.

15: bl½nþm� – const double Input

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first n elements of bl must contain the bounds on the variables x, and the next m elements the
bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To fix the jth
variable, set bl½j� 1� ¼ bu½j� 1� ¼ �, say, where �j j < bigbnd. To specify a non-existent lower
bound (i.e., lj ¼ �1), set bl½j� 1� � �bigbnd, where bigbnd is the value of the optional argument
Infinite Bound Size (see Section 11.2). To specify the jth constraint as an equality, set
bl½nþ j� 1� ¼ bu½nþ j� 1� ¼ �, say, where �j j < bigbnd. Note that the lower bound
corresponding to the free row must be set to �1 and stored in bl½nþ iobj� 1�.
Constraint: if iobj > 0, bl½nþ iobj� 1� � �bigbnd.

(See also the description for bu below.)

16: bu½nþm� – const double Input

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first n elements of bu must contain the bounds on the variables x, and the next m elements the
bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify a
non-existent upper bound (i.e., uj ¼ þ1), set bu½j� 1� � bigbnd. Note that the upper bound
corresponding to the free row must be set to þ1 and stored in bu½nþ iobj� 1�.
Constraints:

if iobj > 0, bu½nþ iobj� 1� � bigbnd;
bl½i� 1� � bu½i� 1� otherwise.

17: c½lenc� – const double Input

On entry: contains the explicit objective vector c (if any). If the problem is of type FP, or if
lenc ¼ 0, then c is not referenced and may be set to 0. (In that case, c may be dimensioned (1), or
it could be any convenient array.)

18: names½nname� – const char * Input

On entry: the optional column and row names, respectively.

If nname ¼ 1, names is not referenced and the printed output will use default names for the
columns and rows.

If nname ¼ nþm, the first n elements must contain the names for the columns and the next m
elements must contain the names for the rows. Note that the name for the free row (if any) must be
stored in names½nþ iobj� 1�.
Note: that only the first eight characters of the strings in names are significant.

19: helast½nþm� – const Integer Input

On entry: defines which variables are to be treated as being elastic in elastic mode. The allowed
values of helast are:

helast½j� 1� Status in elastic mode
0 Variable j is non-elastic and cannot be infeasible
1 Variable j can violate its lower bound
2 Variable j can violate its upper bound
3 Variable j can violate either its lower or upper bound
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helast need not be assigned if optional argument Elastic Mode ¼ 0 (see Section 11.2).

Constraint: helast½j� 1� ¼ 0; 1; 2; 3 if Elastic Mode 6¼ 0, for j ¼ 1; 2; . . . ; nþm.

20: hs½nþm� – Integer Input/Output

On entry: if start ¼ Nag_Cold or Nag_BasisFile, and a basis file of some sort is to be input (an
Old Basis File, Insert File or Load File, see Section 11.2), then hs and x need not be set at all.

If start ¼ Nag_Cold and there is no basis file, the first n elements of hs and x must specify the
initial states and values, respectively, of the variables x. (The slacks s need not be initialized.) An
internal Crash procedure is then used to select an initial basis matrix B. The initial basis matrix will
be triangular (neglecting certain small elements in each column). It is chosen from various rows
and columns of A �Ið Þ. Possible values for hs½j� 1� are as follows:

hs½j� 1� State of x½j� 1� during Crash procedure

0 or 1 Eligible for the basis
2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set hs½j� 1� ¼ 0 and x½j� 1� ¼ 0:0, for j ¼ 1; 2; . . . ; n. All variables will then be eligible
for the initial basis. Less trivially, to say that the jth variable will probably be equal to one of its
bounds, set hs½j� 1� ¼ 4 and x½j� 1� ¼ bl½j� 1� or hs½j� 1� ¼ 5 and x½j� 1� ¼ bu½j� 1� as
appropriate.

Following the Crash procedure, variables for which hs½j� 1� ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value x½j� 1� if
bl½j� 1� � x½j� 1� � bu½j� 1�, or at the value bl½j� 1� or bu½j� 1� closest to x½j� 1�.
If start ¼ Nag_Warm, hs and x must specify the initial states and values, respectively, of the
variables and slacks x; sð Þ. If nag_opt_sparse_convex_qp_solve (e04nqc) has been called previously
with the same values of n and m, hs already contains satisfactory information.

Constraints:

if start ¼ Nag_Cold, 0 � hs½j� 1� � 5, for j ¼ 1; 2; . . . ; n;
if start ¼ Nag_Warm, 0 � hs½j� 1� � 3, for j ¼ 1; 2; . . . ;nþm.

On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value of
hs½j� 1� is as follows:

hs½j� 1� State of variable j Normal value of x½j� 1�
0 Nonbasic bl½j� 1�
1 Nonbasic bu½j� 1�
2 Superbasic Between bl½j� 1� and bu½j� 1�
3 Basic Between bl½j� 1� and bu½j� 1�

If ninf ¼ 0, basic and superbasic variables may be outside their bounds by as much as the value of
the optional argument Feasibility Tolerance (see Section 11.2). Note that unless the optional
argument Scale Option ¼ 0 (see Section 11.2) is specified, the Feasibility Tolerance applies to the
variables of the scaled problem. In this case, the variables of the original problem may be as much
as 0:1 outside their bounds, but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the
Feasibility Tolerance, and there may be some nonbasic variables for which x½j� 1� lies strictly
between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by sinf if Scale Option ¼ 0).
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21: x½nþm� – double Input/Output

On entry: the initial values of the variables x, if start ¼ Nag_Warm and slacks s, i.e., x; sð Þ. (See
the description for hs above.)

On exit: the final values of the variables and slacks x; sð Þ.

22: pi½m� – double Output

On exit: contains the dual variables � (a set of Lagrange-multipliers (shadow prices) for the general
constraints).

23: rc½nþm� – double Output

On exit: the first n elements contain the reduced costs, g � A �Ið ÞT�, where g is the gradient of
the objective if x is feasible (or the gradient of the Phase 1 objective otherwise). The last m entries
are �.

24: ns – Integer * Input/Output

On entry: nS , the number of superbasics. For QP problems, ns need not be specified if
start ¼ Nag_Cold, but must retain its value from a previous call when start ¼ Nag_Warm. For
FP and LP problems, ns need not be initialized.

On exit: the final number of superbasics. This will be zero for FP and LP problems.

25: ninf – Integer * Output

On exit: the number of infeasibilities.

26: sinf – double * Output

On exit: the sum of the scaled infeasibilities. This will be zero if ninf ¼ 0, and is most meaningful
when Scale Option ¼ 0 (see Section 11.2).

27: obj – double * Output

On exit: the value of the objective function.

If ninf ¼ 0, obj includes the quadratic objective term 1
2x

THx (if any).

If ninf > 0, obj is just the linear objective term cTx (if any).

For FP problems, obj is set to zero.

28: state – Nag_E04State * Communication Structure

Note: state is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

state contains internal information required for functions in this suite. It must not be modified in
any way.

29: comm – Nag_Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

30: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Internal memory allocation failed when attempting to obtain workspace sizes valueh i, valueh i and
valueh i. Please contact NAG.
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NE_ALLOC_INSUFFICIENT

Internal memory allocation was insufficient. Please contact NAG.

NE_ARRAY_INPUT

On entry, loca½0� is not 1 or loca½ valueh i� is not equal to neþ 1. loca½0� ¼ valueh i,
loca½ valueh i� ¼ valueh i, ne ¼ valueh i.
On entry, row index valueh i in inda½ valueh i� is outside the range 1 to m ¼ valueh i.

NE_BAD_PARAM

Basis file dimensions do not match this problem.

NE_BASIS_FAILURE

An error has occurred in the basis package, perhaps indicating incorrect setup of arrays inda and
loca. Set the optional argument Print File and examine the output carefully for further information.

NE_BASIS_ILL_COND

Numerical difficulties have been encountered and no further progress can be made.

NE_BASIS_SINGULAR

The basis is singular after several attempts to factorize it (and add slacks where necessary).

NE_E04NPC_NOT_INIT

Initialization function nag_opt_sparse_convex_qp_init (e04npc) has not been called.

NE_HESS_INDEF

Error in the user-supplied function qphx: the QP Hessian is indefinite.

NE_HESS_TOO_BIG

The superbasics limit is too small.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INT_2

On entry, iobj < 0 or iobj > m. iobj ¼ valueh i, m ¼ valueh i.
On entry, lenc < 0 or lenc > n. lenc ¼ valueh i, n ¼ valueh i.
On entry, ncolh < 0 or ncolh > n. ncolh ¼ valueh i, n ¼ valueh i.
On entry, ne is not equal to the number of non-zeros in acol. ne ¼ valueh i, non-zeros in
acol ¼ valueh i.

NE_INT_3

On entry, n ¼ valueh i, m ¼ valueh i, nname ¼ valueh i.
Constraint: nname ¼ 1 or nþm.

On entry, ne < 1 or ne > n�m. ne ¼ valueh i, n ¼ valueh i, m ¼ valueh i.
On entry, nname is not equal to 1 or nþm. nname ¼ valueh i, n ¼ valueh i, m ¼ valueh i.
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NE_INTERNAL_ERROR

An unexpected error has occurred. Set the optional argument Print File and examine the output
carefully for further information.

NE_NOT_REQUIRED_ACC

The requested accuracy could not be achieved.

NE_REAL_2

On entry, bounds bl and bu for valueh i are equal and infinite. bl ¼ bu ¼ valueh i,
bigbnd ¼ valueh i.
On entry, bounds bl and bu for valueh i valueh i are equal and infinite. bl ¼ bu ¼ valueh i,
bigbnd ¼ valueh i.
On entry, bounds for valueh i are inconsistent. bl ¼ valueh i, bu ¼ valueh i.
On entry, bounds for valueh i valueh i are inconsistent. bl ¼ valueh i, bu ¼ valueh i.

NE_UNBOUNDED

The problem appears to be unbounded. The constraint violation limit has been reached.

The problem appears to be unbounded. The objective function is unbounded.

NW_NOT_FEASIBLE

The linear constraints appear to be infeasible.

The problem appears to be infeasible. Infeasibilites have been minimized.

The problem appears to be infeasible. Nonlinear infeasibilites have been minimized.

The problem appears to be infeasible. The linear equality constraints could not be satisfied.

NW_SOLN_NOT_UNIQUE

Weak solution found – the solution is not unique.

NW_TOO_MANY_ITER

Iteration limit reached.

Major iteration limit reached.

7 Accuracy

nag_opt_sparse_convex_qp_solve (e04nqc) implements a numerically stable active-set strategy and returns
solutions that are as accurate as the condition of the problem warrants on the machine.

8 Further Comments

This section contains a description of the printed output.

8.1 Description of the Printed Output

If Print Level > 0, one line of information is output to the Print File every kth iteration, where k is the
specified Print Frequency (see Section 11.2). A heading is printed before the first such line following a
basis factorization. The heading contains the items described below. In this description, a pricing
operation is defined to be the process by which one or more nonbasic variables are selected to become
superbasic (in addition to those already in the superbasic set). The variable selected will be denoted by jq.
If the problem is purely linear, variable jq will usually become basic immediately (unless it should happen
to reach its opposite bound and return to the nonbasic set).
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If Partial Price (see Section 11.2) is in effect, variable jq is selected from App or Ipp, the ppth segments

of the constraint matrix A �Ið Þ.
Label Description

Itn is the iteration count.

pp is the optional indicator. The variable selected by the last pricing operation came
from the ppth partition of A and �I . Note that pp is reset to zero whenever the
basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by the
pricing operation at the start of the current iteration.

Algebraically, dj is dj ¼ gj � �Taj, for j ¼ jq where gj is the gradient of the
current objective function, � is the vector of dual variables, and aj is the jth column
of the constraint matrix A �Ið Þ.
Note that dj is the norm of the reduced-gradient vector at the start of the iteration,
just after the pricing operation.

+SBS is the variable jq selected by the pricing operation to be added to the superbasic set.

-SBS is the variable chosen to leave the superbasic set. It has become basic if the entry
under -B is non-zero, otherwise it becomes nonbasic.

-BS is the variable removed from the basis (if any) to become nonbasic.

-B is the variable chosen to leave the set of basics (if any) in a special basic $
superbasic swap. The entry under -SBS has become basic if this entry is non-zero,
and nonbasic otherwise. The swap is done to ensure that there are no superbasic
slacks.

Step is the value of the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. If a variable is made superbasic
during the current iteration (i.e., +SBS is positive), Step will be the step to the
nearest bound. During the optimality phase, the step can be greater than unity only
if the reduced Hessian is not positive-definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column of
the constraint matrix A �Ið Þ replaces the rth column of the basis matrix B.
Wherever possible, Step is chosen so as to avoid extremely small values of Pivot
(since they may cause the basis to be nearly singular). In extreme cases, it may be
necessary to increase the value of the optional argument Pivot Tolerance (see
Section 11.2) to exclude very small elements of y from consideration during the
computation of Step.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives the
sum of the magnitudes of constraint violations. If x is feasible, Objective is the
value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists.

L is the number of non-zeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this entry contains lenL (see Section 12). Further non-zeros
are added to L when various columns of B are later replaced. (Thus, L increases
monotonically.)
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U is the number of non-zeros in the basis factor U. Immediately after a basis
factorization B ¼ LU , this entry contains lenU (see Section 12). As columns of B
are replaced, the matrix U is maintained explicitly (in sparse form). The value of U
may fluctuate up or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous basis
factorization. Normally, Ncp should increase very slowly.

The following will be output if the problem is QP or if the superbasic is non-empty (i.e., if the current
solution is nonbasic).

Label Description

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 10.3). During the
optimality phase, this norm will be approximately zero after a unit step.

Ns is the current number of superbasic variables.

Cond Hz is a lower bound on the condition number of the reduced Hessian (see
Section 10.2). The larger this number, the more difficult the problem. Attention
should be given to the scaling of the variables and the constraints to guard against
high values of Cond Hz.

9 Example

To minimize the quadratic function f xð Þ ¼ cTxþ 1
2x

THx, where

c ¼ �200:0;�2000:0;�2000:0;�2000:0;�2000:0; 400:0; 400:0ð ÞT

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2

0
BBBBBBBB@

1
CCCCCCCCA

subject to the bounds

0 � x1 � 200
0 � x2 � 2500

400 � x3 � 800
100 � x4 � 700
0 � x5 � 1500
0 � x6
0 � x7

and to the linear constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ 2000
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � 60
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 þ 0:03x7 � 100
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � 40
0:02x1 þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
250 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 300

The initial point, which is infeasible, is

x0 ¼ 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0ð ÞT.
The optimal solution (to five figures) is

x� ¼ 0:0; 349:40; 648:85; 172:85; 407:52; 271:36; 150:02ð ÞT.
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One bound constraint and four linear constraints are active at the solution. Note that the Hessian matrix H
is positive semi-definite.

9.1 Program Text

/* nag_nag_opt_sparse_convex_qp_solve (e04nqc) Example Program.
*
* Copyright 2004 Numerical Algorithms Group.
*
* Mark 8, 2004.
*/

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagx04.h>

static void qphx(Integer ncolh, const double x[], double hx[],
Integer nstate, Nag_Comm *comm);

int main(void)
{

/* Scalars */
double obj, objadd, sinf;
Integer exit_status, i, icol, iobj, j, jcol, lenc, m, n, ncolh, ne, ninf;
Integer nname, ns;

/* Arrays */
char prob[9], start_char[2];
char **names;
double *acol=0, *bl=0, *bu=0, *c=0, *pi=0, *rc=0, *x=0;
Integer *helast=0, *hs=0, *inda=0, *loca=0;

/*Nag Types*/
Nag_E04State state;
NagError fail;
Nag_Start start;
Nag_Comm comm;
Nag_FileID fileid;

exit_status = 0;
INIT_FAIL(fail);

Vprintf("nag_opt_sparse_convex_qp_solve (e04nqc) Example Program Results\n");

/* Skip heading in data file. */
Vscanf("%*[^\n] ");

/* Read ne, iobj, ncolh, start and nname from data file. */
Vscanf("%ld%ld%*[^\n] ", &n, &m);
Vscanf("%ld%ld%ld ’ %1s ’%ld%*[^\n] ",

&ne, &iobj, &ncolh, start_char, &nname);
if (n>=1 && m >= 1)

{
/* Allocate memory */
if ( !(names = NAG_ALLOC(n+m, char *)) ||

!(acol = NAG_ALLOC(ne, double)) ||
!(bl = NAG_ALLOC(m+n, double)) ||
!(bu = NAG_ALLOC(m+n, double)) ||
!(c = NAG_ALLOC(1, double)) ||
!(pi = NAG_ALLOC(m, double)) ||
!(rc = NAG_ALLOC(n+m, double)) ||
!(x = NAG_ALLOC(n+m, double)) ||
!(helast = NAG_ALLOC(n+m, Integer)) ||
!(hs = NAG_ALLOC(n+m, Integer)) ||
!(inda = NAG_ALLOC(ne, Integer)) ||
!(loca = NAG_ALLOC(n+1, Integer)) )
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{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

Vprintf("%s", "Either m or n invalid\n");
exit_status = 1;
return exit_status;

}

/* Read names from data file. */
for (i = 1; i <= nname; ++i)

{
names[i-1] = NAG_ALLOC(9, char);
Vscanf(" ’ %8s ’", names[i-1]);

}
Vscanf("%*[^\n] ");

/* Read the matrix acol from data file. Set up LOCA. */
jcol = 1;
loca[jcol - 1] = 1;
for (i = 1; i <= ne; ++i)

{
/* Element (inda[i-1], icol) is stored in acol[i-1]. */
Vscanf("%lf%ld%ld%*[^\n] ", &acol[i - 1], &inda[i - 1],

&icol);
if (icol < jcol)

{
/* Elements not ordered by increasing column index. */
Vprintf("%s%5ld%s%5ld%s%s\n", "Element in column",

icol, " found after element in column", jcol, ". Problem",
" abandoned.");

}
else if (icol == jcol + 1)

{
/* Index in ACOL of the start of the ICOL-th column equals I. */
loca[icol - 1] = i;
jcol = icol;

}
else if (icol > jcol + 1)

{
/* Index in acol of the start of the icol-th column equals i, */
/* but columns jcol+1,jcol+2,...,icol-1 are empty. Set the */
/* corresponding elements of loca to i. */
for (j = jcol + 1; j <= icol - 1; ++j)

{
loca[j - 1] = i;

}
loca[icol - 1] = i;
jcol = icol;

}
}

loca[n] = ne + 1;

if (n > icol)
{

/* Columns n,n-1,...,icol+1 are empty. Set the corresponding */
/* elements of loca accordingly. */
for (i = n; i >= icol + 1; --i)

{
loca[i - 1] = loca[i];

}
}

/* Read bl, bu, hs and x from data file. */
for (i = 1; i <= n + m; ++i)

{
Vscanf("%lf", &bl[i - 1]);
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}
Vscanf("%*[^\n] ");

for (i = 1; i <= n + m; ++i)
{

Vscanf("%lf", &bu[i - 1]);
}

Vscanf("%*[^\n] ");

if (*(unsigned char *)start_char == ’C’)
{

start = Nag_Cold;
for (i = 1; i <= n; ++i)

{
Vscanf("%ld", &hs[i - 1]);

}
Vscanf("%*[^\n] ");

}
else if (*(unsigned char *)start_char == ’W’)

{
start = Nag_Warm;
for (i = 1; i <= n + m; ++i)

{
Vscanf("%ld", &hs[i - 1]);

}
Vscanf("%*[^\n] ");

}
for (i = 1; i <= n; ++i)

{
Vscanf("%lf", &x[i - 1]);

}
Vscanf("%*[^\n] ");

/* Call nag_opt_sparse_convex_qp_init (e04npc) to initialise e04nqc. */
/* nag_opt_sparse_convex_qp_init (e04npc).
* Initialization function for
* nag_opt_sparse_convex_qp_solve (e04nqc)
*/

nag_opt_sparse_convex_qp_init(&state, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Initialisation of nag_opt_sparse_convex_qp_solve (e04nqc)"

" failed.\n");
exit_status = 1;
goto END;

}
/* By default nag_opt_sparse_convex_qp_solve (e04nqc) does not print
* monitoring information. Call nag_open_file (x04acc) to set the print file
* fileid */

/* nag_open_file (x04acc).
* Open unit number for reading, writing or appending, and
* associate unit with named file
*/

nag_open_file("", 2, &fileid, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Fileid could not be obtained.\n");
exit_status = 1;
goto END;

}

/* nag_opt_sparse_convex_qp_option_set_integer (e04ntc).
* Set a single option for nag_opt_sparse_convex_qp_solve
* (e04nqc) from an integer argument
*/

nag_opt_sparse_convex_qp_option_set_integer("Print file", fileid, &state,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Files stream could not be set.\n");
exit_status = 1;
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goto END;
}

/* We have no explicit objective vector so set lenc = 0; the
* objective vector is stored in row iobj of acol.
*/

lenc = 0;
objadd = 0.;
strcpy(prob, "");

/* Do not allow any elastic variables (i.e. they cannot be */
/* infeasible). If we’d set optional argument "Elastic mode" to 0, */
/* we wouldn’t need to set the individual elements of array helast. */
for (i = 1; i <= n + m; ++i)

{
helast[i - 1] = 0;

}

/* Solve the QP problem. */
/* nag_opt_sparse_convex_qp_solve (e04nqc).
* LP or QP problem (suitable for sparse problems)
*/

nag_opt_sparse_convex_qp_solve(start, qphx, m, n, ne, nname, lenc, ncolh,
iobj, objadd, prob, acol, inda, loca, bl, bu,
c, names, helast, hs, x, pi, rc, &ns, &ninf,
&sinf, &obj, &state, &comm, &fail);

Vprintf("\n");
Vprintf("On exit from e04nqc, fail.message = %s\n", fail.message);
if (fail.code == NE_NOERROR)

{
Vprintf("Final objective value = %11.3e\n", obj);
Vprintf("Optimal X = ");

for (i = 1; i <= n; ++i)
{

Vprintf("%9.2f%s", x[i - 1], i%7 == 0 || i == n ?"\n":" ");
}

}
END:
for (i = 0; i < n+m; i++)

{
if (names[i]) NAG_FREE(names[i]);

}
if (names) NAG_FREE(names);
if (acol) NAG_FREE(acol);
if (bl) NAG_FREE(bl);
if (bu) NAG_FREE(bu);
if (c) NAG_FREE(c);
if (pi) NAG_FREE(pi);
if (rc) NAG_FREE(rc);
if (x) NAG_FREE(x);
if (helast) NAG_FREE(helast);
if (hs) NAG_FREE(hs);
if (inda) NAG_FREE(inda);
if (loca) NAG_FREE(loca);
return exit_status;

}

static void qphx(Integer ncolh, const double x[], double hx[],
Integer nstate, Nag_Comm *comm)

{
/* Routine to compute H*x. (In this version of qphx, the Hessian
* matrix H is not referenced explicitly.)
*/

/* Parameter adjustments */
#define HX(I) hx[(I)-1]
#define X(I) x[(I)-1]

/* Function Body */
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HX(1) = X(1) * 2;
HX(2) = X(2) * 2;
HX(3) = (X(3) + X(4)) * 2;
HX(4) = HX(3);
HX(5) = X(5) * 2;
HX(6) = (X(6) + X(7)) * 2;
HX(7) = HX(6);
return;

} /* qphx */

9.2 Program Data

nag_opt_sparse_convex_qp_solve (e04nqc) Example Program Data
7 8 : Values of N and M

48 8 7 ’C’ 15 : Values of NNZ, IOBJ, NCOLH, START and NNAME

’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ : End of array NAMES

0.02 7 1 : Sparse matrix A, ordered by increasing column index;
0.02 5 1 : each row contains ACOL(i), INDA(i), ICOL (= column index)
0.03 3 1 : The row indices may be in any order. In this example
1.00 1 1 : row 8 defines the linear objective term transpose(C)*X.
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 : End of matrix A

0.0 0.0 4.0E+02 1.0E+02 0.0 0.0
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0.0 2.0E+03 -1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25
1.5E+03 2.5E+02 -1.0E+25 : End of lower bounds array BL

2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25
1.0E+25 2.0E+03 6.0E+01 1.0E+02 4.0E+01 3.0E+01
1.0E+25 3.0E+02 1.0E+25 : End of upper bounds array BU

0 0 0 0 0 0 0 : Initial array HS
0.0 0.0 0.0 0.0 0.0 0.0 0.0 : Initial vector X

9.3 Program Results

nag_opt_sparse_convex_qp_solve (e04nqc) Example Program Results

Parameters

==========

Files

-----

Solution file.......... 0 Old basis file ........ 0 (Print file)........... 6

Insert file............ 0 New basis file ........ 0 (Summary file)......... 0

Punch file............. 0 Backup basis file...... 0

Load file.............. 0 Dump file.............. 0

Frequencies

-----------

Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100

Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

LP/QP Parameters

----------------

Minimize............... QPsolver Cholesky...... Cold start.............

Scale tolerance........ 0.900 Feasibility tolerance.. 1.00E-06 Iteration limit........ 10000

Scale option........... 2 Optimality tolerance... 1.00E-06 Print level............ 1

Crash tolerance........ 0.100 Pivot tolerance........ 2.05E-11 Partial price.......... 1

Crash option........... 3 Elastic weight......... 1.00E+00 Prtl price section ( A) 7

Elastic mode........... 1 Elastic objective...... 1 Prtl price section (-I) 8

QP objective

------------

Objective variables.... 7 Hessian columns........ 7 Superbasics limit...... 7

Nonlin Objective vars.. 7 Unbounded step size.... 1.00E+20

Linear Objective vars.. 0

Miscellaneous

-------------

LU factor tolerance.... 3.99 LU singularity tol..... 2.05E-11 Timing level........... 0

LU update tolerance.... 3.99 LU swap tolerance...... 1.03E-04 Debug level............ 0

LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Nonlinear constraints 0 Linear constraints 8

Nonlinear variables 7 Linear variables 0

Jacobian variables 0 Objective variables 7

Total constraints 8 Total variables 7

Itn 1: Feasible linear constraints

E04NQF EXIT 0 -- finished successfully

E04NQF INFO 1 -- optimality conditions satisfied

Problem name

No. of iterations 9 Objective value -1.8477846771E+06

No. of Hessian products 16 Objective row -2.9886903537E+06

Quadratic objective 1.1409056766E+06

No. of superbasics 2 No. of basic nonlinears 4

No. of degenerate steps 0 Percentage 0.00

Max x (scaled) 3 2.4E-01 Max pi (scaled) 6 4.7E+07

Max x 3 6.5E+02 Max pi 7 1.5E+04

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 6 1.1E-08
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Max Primal infeas 0 0.0E+00 Max Dual infeas 9 6.4E-12

Name Objective Value -1.8477846771E+06

Status Optimal Soln Iteration 9 Superbasics 2

Section 1 - Rows

Number ...Row.. State ...Activity... Slack Activity ..Lower Limit. ..Upper Limit. .Dual Activity ..i

8 ..ROW1.. EQ 2000.00000 . 2000.00000 2000.00000 -12900.76766 1

9 ..ROW2.. BS 49.23160 -10.76840 None 60.00000 0.00000 2

10 ..ROW3.. UL 100.00000 . None 100.00000 -2324.86620 3

11 ..ROW4.. BS 32.07187 -7.92813 None 40.00000 . 4

12 ..ROW5.. BS 14.55719 -15.44281 None 30.00000 . 5

13 ..ROW6.. LL 1500.00000 . 1500.00000 None 14454.60290 6

14 ..ROW7.. LL 250.00000 . 250.00000 300.00000 14580.95432 7

15 ..COST.. BS -2988690.35370 -2988690.35370 None None -1.0 8

Section 2 - Columns

Number .Column. State ...Activity... .Obj Gradient. ..Lower Limit. ..Upper Limit. Reduced Gradnt m+j

1 ...X1... LL . -200.00000 . 200.00000 2360.67253 9

2 ...X2... BS 349.39923 -1301.20153 . 2500.00000 -0.00000 10

3 ...X3... SBS 648.85342 -356.59829 400.00000 800.00000 0.00000 11

4 ...X4... SBS 172.84743 -356.59829 100.00000 700.00000 -0.00000 12

5 ...X5... BS 407.52089 -1184.95822 . 1500.00000 -0.00000 13

6 ...X6... BS 271.35624 1242.75804 . None -0.00000 14

7 ...X7... BS 150.02278 1242.75804 . None 0.00000 15

On exit from e04nqc, fail.message = NE_NOERROR:

No error.

Final objective value = -1.848e+06

Optimal X = 0.00 349.40 648.85 172.85 407.52 271.36 150.02

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed
algorithm description that may be needed in order to understand Sections 11 and 12. Section 11 describes the
optional arguments that may be set by calls to nag_opt_sparse_convex_qp_option_set_file (e04nrc),
nag_opt_sparse_convex_qp_option_set_string (e04nsc), nag_opt_sparse_convex_qp_option_set_integer
(e04ntc) and/or nag_opt_sparse_convex_qp_option_set_double (e04nuc). Section 12 describes the quantities
that can be requested to monitor the course of the computation.

10 Algorithmic Details

This section contains a description of the method used by nag_opt_sparse_convex_qp_solve (e04nqc).

10.1 Overview

nag_opt_sparse_convex_qp_solve (e04nqc) is based on an inertia-controlling method that maintains a
Cholesky factorization of the reduced Hessian (see below). The method is similar to that of Gill and
Murray (1978), and is described in detail by Gill et al. (1991). Here we briefly summarize the main
features of the method. Where possible, explicit reference is made to the names of variables that are
arguments of the function or appear in the printed output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible
region (the optimality phase). The computations in both phases are performed by the same functions. The
two-phase nature of the algorithm is reflected by changing the function being minimized from the sum of
infeasibilities (the printed quantity Sinf; see Section 12) to the quadratic objective function (the printed
quantity Objective; see Section 12).
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In general, an iterative process is required to solve a quadratic program. Given an iterate x; sð Þ in both the
original variables x and the slack variables s, a new iterate �x;�sð Þ is defined by

�x
�s

� �
¼ x

s

� �
þ �p, ð2Þ

where the step length � is a non-negative scalar (the printed quantity Step; see Section 12), and p is called
the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to the index
of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent iterates remain
feasible.

10.2 Definition of the Working Set and Search Direction

At each iterate x; sð Þ, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the value of the optional argument Feasibility Tolerance;
see Section 11.2). The working set is the current prediction of the constraints that hold with equality at a
solution of the LP or QP problem. Let mW denote the number of constraints in the working set (including
bounds), and let W denote the associated mW by nþ mð Þ working set matrix consisting of the mW

gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of the
step length. It follows that p must satisfy the identity

Wp ¼ 0. ð3Þ
This characterization allows p to be computed using any n by nZ full-rank matrix Z that spans the null
space of W . (Thus, nZ ¼ n� mW and WZ ¼ 0.) The null space matrix Z is defined from a sparse LU
factorization of part of W (see (6) and (7) below). The direction p will satisfy (3) if

p ¼ ZpZ , ð4Þ
where pZ is any nZ-vector.

The working set contains the constraints Ax� s ¼ 0 and a subset of the upper and lower bounds on the
variables x; sð Þ. Since the gradient of a bound constraint xj � lj or xj � uj is a vector of all zeros except
for �1 in position j, it follows that the working set matrix contains the rows of A �Ið Þ and the unit rows
associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix
A �Ið Þ by (conceptually) partitioning the constraints Ax� s ¼ 0 so that

BxB þ SxS þ NxN ¼ 0, ð5Þ
where B is a square non-singular basis and xB, xS and xN are the basic, superbasic and nonbasic variables
respectively. The nonbasic variables are equal to their upper or lower bounds at x; sð Þ, and the superbasic
variables are independent variables that are chosen to improve the value of the current objective function.
The number of superbasic variables is nS (the printed quantity Ns; see Section 12). Given values of xN and
xS , the basic variables xB are adjusted so that x; sð Þ satisfies (5).

If P is a permutation matrix such that A �Ið ÞP ¼ B S Nð Þ, then W satisfies

WP ¼ B S N
0 0 IN

� �
, ð6Þ

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is
maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. (1991)) to maintain
sparse LU factors of the basis matrix B that alters as the working set W changes. Given the permutation
P, the null space basis is given by

Z ¼ P
�B�1S

I
0

0
@

1
A. ð7Þ

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv and
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ZTg are obtained by solving with B or BT. This choice of Z implies that nZ , the number of ‘degrees of
freedom’ at x; sð Þ, is the same as nS , the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ ¼ ZTg and HZ ¼ ZTHZ, ð8Þ
where g is the objective gradient at x; sð Þ. Roughly speaking, gZ and HZ describe the first and second
derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The condition
estimator of HZ is the quantity Cond Hz in the monitoring file output; see Section 12.)

At each iteration, an upper triangular factor R is available such that HZ ¼ RTR. Normally, R is computed

from RTR ¼ ZTHZ at the start of the optimality phase and then updated as the QP working set changes.
For efficiency, the dimension of R should not be excessive (say, nS � 1000). This is guaranteed if the
number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semi-definite and R may be singular with at least
one zero diagonal element. However, an inertia-controlling strategy is used to ensure that only the last
diagonal element of R can be zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a non-singular R. This is
equivalent to including temporary bound constraints in the working set. Thereafter, R can become singular
only when a constraint is deleted from the working set (in which case no further constraints are deleted
until R becomes non-singular).

10.3 Main Iteration

If the reduced gradient is zero, x; sð Þ is a constrained stationary point on the working set. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective function when the constraints in the working set
are treated as equalities. At a constrained stationary point, Lagrange-multipliers � are defined from the
equations

WT� ¼ g xð Þ. ð9Þ
A Lagrange-multiplier, �j, corresponding to an inequality constraint in the working set is said to be optimal
if �j � � when the associated constraint is at its upper bound, or if �j � �� when the associated constraint
is at its lower bound, where � depends on the value of the optional argument Optimality Tolerance (see
Section 11.2). If a multiplier is non-optimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by continuing the minimization with the corresponding constraint excluded
from the working set. (This step is sometimes referred to as ‘deleting’ a constraint from the working set.)
If optimal multipliers occur during the feasibility phase but the sum of infeasibilities is non-zero, there is
no feasible point and the function terminates immediately with fail.code ¼ NE_NOT_REQUIRED_ACC
(see Section 6).

The special form (6) of the working set allows the multiplier vector �, the solution of (9), to be written in
terms of the vector

d ¼ g
0

� �
� A �Ið ÞT� ¼ g � AT�

�

� �
, ð10Þ

where � satisfies the equations BT� ¼ gB, and gB denotes the basic elements of g. The elements of � are
the Lagrange-multipliers �j associated with the equality constraints Ax� s ¼ 0. The vector dN of nonbasic
elements of d consists of the Lagrange-multipliers �j associated with the upper and lower bound
constraints in the working set. The vector dS of superbasic elements of d is the reduced gradient gZ in (8).
The vector dB of basic elements of d is zero, by construction. (The Euclidean norm of dS and the final
values of dS , g and � are the quantities Norm rg, Reduced Gradnt, Obj Gradient and Dual Activity in
the monitoring file output; see Section 12.)
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If the reduced gradient is not zero, Lagrange-multipliers need not be computed and the search direction is
given by p ¼ ZpZ (see (7) and (11)). The step length is chosen to maintain feasibility with respect to the
satisfied constraints.

There are two possible choices for pZ, depending on whether or not HZ is singular. If HZ is non-singular,
R is non-singular and pZ in (4) is computed from the equations

RTRpZ ¼ �gZ , ð11Þ
where gZ is the reduced gradient at x. In this case, x; sð Þ þ p is the minimizer of the objective function
subject to the working set constraints being treated as equalities. If x; sð Þ þ p is feasible, � is defined to be
unity. In this case, the reduced gradient at �x;�sð Þ will be zero, and Lagrange-multipliers are computed at the
next iteration. Otherwise, � is set to �N , the step to the ‘nearest’ constraint along p. This constraint is
then added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that
only the last diagonal element of R is zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.) In this case, pZ satisfies

pTZ HZpZ ¼ 0 and gTZ pZ � 0, ð12Þ
which allows the objective function to be reduced by any step of the form x; sð Þ þ �p, where � > 0. The
vector p ¼ ZpZ is a direction of unbounded descent for the QP problem in the sense that the QP objective
is linear and decreases without bound along p. If no finite step of the form x; sð Þ þ �p (where � > 0)
reaches a constraint not in the working set, the QP problem is unbounded and the function terminates
immediately with fail.code ¼ NE_UNBOUNDED (see Section 6). Otherwise, � is defined as the
maximum feasible step along p and a constraint active at x; sð Þ þ �p is added to the working set for the
next iteration.

nag_opt_sparse_convex_qp_solve (e04nqc) makes explicit allowance for infeasible constraints. Infeasible
linear constraints are detected first by solving a problem of the form

minimize
x;v;w

eT vþ wð Þ subject to l � x
Gx� vþ w

� �
� u, v � 0, w � 0, ð13Þ

where e ¼ 1; 1; . . . ; 1ð ÞT. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often called
elastic programming.)

10.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (7) could be
arbitrarily high. To guard against this, the function implements a ‘basis repair’ feature in which the
LUSOL package (see Gill et al. (1991)) is used to compute the rectangular factorization

B Sð ÞT¼ LU , ð14Þ

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to

require PLPT
		 		

ij
� 2, and the permutation is used to define P in (6). It can be shown that Zk k is likely to

be little more than unity. Hence, Z should be well-conditioned regardless of the condition of W . This
feature is applied at the beginning of the optimality phase if a potential B� S ordering is known.

The EXPAND procedure (see Gill et al. (1989)) is used to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no absolute guarantee that
cycling will not occur, the probability of cycling is extremely small (see Hall and McKinnon (1996)). The
main feature of EXPAND is that the feasibility tolerance is increased at the start of every iteration. This
allows a positive step to be taken at every iteration, perhaps at the expense of violating the bounds on
x; sð Þ by a small amount.

Suppose that the value of the optional argument Feasibility Tolerance (see Section 11.2) is �. Over a
period of K iterations (where K is the value of the optional argument Expand Frequency; see
Section 11.2), the feasibility tolerance actually used by the function (i.e., the working feasibility tolerance)
increases from 0:5� to � (in steps of 0:5�=K).
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At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of non-
trivial adjustments made. If the count is non-zero, the basic variables are recomputed. Finally, the
working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of
iterations is started. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when the function reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any non-trivial adjustments are
made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides a
potential choice of constraints to be added to the working set. All constraints at a distance � (where
� � �N ) along p from the current point are then viewed as acceptable candidates for inclusion in the
working set. The constraint whose normal makes the largest angle with the search direction is added to the
working set. This strategy helps keep the basis matrix B well-conditioned.

11 Optional Arguments

Several optional arguments in nag_opt_sparse_convex_qp_solve (e04nqc) define choices in the problem
specification or the algorithm logic. In order to reduce the number of formal arguments of
nag_opt_sparse_convex_qp_solve (e04nqc) these optional arguments have associated default values that
are appropriate for most problems. Therefore, you need only specify those optional arguments whose
values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
arguments. A complete list of optional arguments and their default values is given in Section 11.1.

Optional arguments may be specified by calling one, or any, of the functions
nag_opt_sparse_convex_qp_option_set_file (e04nrc), nag_opt_sparse_convex_qp_option_set_string
(e04nsc), nag_opt_sparse_convex_qp_option_set_integer (e04ntc) and
nag_opt_sparse_convex_qp_option_set_double (e04nuc) prior to a call to
nag_opt_sparse_convex_qp_solve (e04nqc), but after a call to nag_opt_sparse_convex_qp_init (e04npc).

nag_opt_sparse_convex_qp_option_set_file (e04nrc) reads options from an external options file, with
Begin and End as the first and last lines respectively and each intermediate line defining a single optional
argument. For example,

Begin
Print Level = 5

End

The call

e04nrc (ioptns, &state, &fail);

can then be used to read the file on descriptor ioptns. fail.code ¼ NE_NOERROR on successful exit.
nag_opt_sparse_convex_qp_option_set_file (e04nrc) should be consulted for a full description of this
method of supplying optional arguments.

nag_opt_sparse_convex_qp_option_set_string (e04nsc), nag_opt_sparse_convex_qp_option_set_integer
(e04ntc) or nag_opt_sparse_convex_qp_option_set_double (e04nuc) can be called to supply options
directly, one call being necessary for each optional argument.
nag_opt_sparse_convex_qp_option_set_string (e04nsc), nag_opt_sparse_convex_qp_option_set_integer
(e04ntc) or nag_opt_sparse_convex_qp_option_set_double (e04nuc) should be consulted for a full
description of this method of supplying optional arguments.

All optional arguments not specified by you are set to their default values. Optional arguments specified
by you are unaltered by nag_opt_sparse_convex_qp_solve (e04nqc) (unless they define invalid values) and
so remain in effect for subsequent calls unless altered by you.
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11.1 Optional Argument Checklist and Default Values

The following list gives the valid options. For each option, we give the keyword, any essential optional
qualifiers and the default value. A definition for each option can be found in Section 11.2. The minimum
abbreviation of each keyword is underlined. The qualifier may be omitted. The letters i and r denote
Integer and double values required with certain options. The default value of an option is used whenever
the condition ij j � 100000000 is satisfied. The number � is a generic notation for machine precision (see
nag_machine_precision (X02AJC)).

Optional arguments used to specify files (e.g., Dump File and Print File) have type Nag_FileID. This ID
value must either be set to 0 (the default value) in which case there will be no output, or will be as
returned by a call of nag_open_file (x04acc).

Optional Arguments Default Values

Backup Basis File Default ¼ 0
Check Frequency Default ¼ 60
Crash Option Default ¼ 3
Crash Tolerance Default ¼ 0:1
Defaults
Dump File Default ¼ 0
Elastic Mode Default ¼ 1
Elastic Objective Default ¼ 1
Elastic Weight Default ¼ 1:0
Expand Frequency Default ¼ 10000
Factorization Frequency Default ¼ 100 LPð Þ or 50 QPð Þ
Feasibility Tolerance Default ¼ 10�6

Infinite Bound Size Default ¼ 1020

Insert File Default ¼ 0
Iteration Limit Default ¼ max 10000;mð Þ
Iters
Itns
List Default ¼ Nolist
Load File Default ¼ 0
LU Factor Tolerance Default ¼ 3:99
LU Singularity Tolerance Default ¼ �0:67

LU Update Tolerance Default ¼ 3:99
Maximize Default ¼ Minimize
Minimize
New Basis File Default ¼ 0
Nolist
Optimality Tolerance Default ¼ 10�6

Old Basis File Default ¼ 0
Partial Price Default ¼ 10 LPð Þ or 1 QPð Þ
Pivot Tolerance Default ¼ �0:67

Print File Default ¼ 0
Print Frequency Default ¼ 100
Print Level Default ¼ 1
Punch File Default ¼ 0
Save Frequency Default ¼ 100
Scale Option Default ¼ 2
Scale Tolerance Default ¼ 0:9
Solution File Default ¼ 0
Summary File Default ¼ 0
Summary Frequency Default ¼ 100
Superbasics Limit Default ¼ min 500; nH þ 1; nð Þ
Suppress Parameters
Timing Level Default ¼ 0
Unbounded Step Size Default ¼ max bigbnd; 1020

� �
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11.2 Description of the Optional Arguments

Check Frequency – Integer i Default ¼ 60

Every ith iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x; sð Þ satisfies the linear constraints Ax� s ¼ 0. If the largest element of the residual vector
r ¼ Ax� s is judged to be too large, the current basis is refactorized and the basic variables recomputed to
satisfy the constraints more accurately. If i < 0, the default value is used. If i ¼ 0, the value
i ¼ 99999999 is used and effectively no checks are made.

Check Frequency ¼ 1 is useful for debugging purposes, but otherwise this option should not be needed.

Crash Option – Integer i Default ¼ 3
Crash Tolerance – double r Default ¼ 0:1

Note that this option does not apply when start ¼ Nag_Warm (see Section 5).

If start ¼ Nag_Cold, an internal Crash procedure is used to select an initial basis from various rows and
columns of the constraint matrix A �Ið Þ. The value of i determines which rows and columns of A are
initially eligible for the basis, and how many times the Crash procedure is called. Columns of �I are used
to pad the basis where necessary.

i Meaning
0 The initial basis contains only slack variables: B ¼ I .
1 The Crash procedure is called once, looking for a triangular basis in all rows and columns of the

matrix A.
2 The Crash procedure is called once, looking for a triangular basis in rows.
3 The Crash procedure is called twice. The two calls treat linear equalities and linear inequalities

separately.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound.) The Crash procedure then makes several passes through
the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned to
‘pivot’ on a particular row if the column contains a suitably large element in a row that has not yet been
assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For remaining
unassigned rows, slack variables are inserted to complete the basis.

This value allows the Crash procedure to ignore certain ‘small’ non-zero elements in each column of A. If
amax is the largest element in column j, other non-zeros aij in the column are ignored if aij

		 		 � amax � r.
(To be meaningful, r should be in the range 0 � r < 1.)

When r > 0:0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis containing more columns
of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some problems.

For example, suppose the first m columns of A form the matrix shown under LU factor tolerance; i.e., a
tridiagonal matrix with entries �1, 4, �1. To help the Crash procedure choose all m columns for the
initial basis, we would specify Crash tolerance r for some value of r > 1

4.

Defaults

This special keyword may be used to reset all optional arguments to their default values.

Dump File – Nag_FileID i1 Default ¼ 0
Load File – Nag_FileID i2 Default ¼ 0

(See Section 11.1 for a description of Nag_FileID.)

Dump File and Load File are similar to Punch File and Insert File, but they record solution information
in a manner that is more direct and more easily modified. A full description of information recorded in
Dump File and Load File is given in Gill et al. (1999).

If Dump File > 0, the last solution obtained will be output to the file Dump File.
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If Load File > 0, the Load File containing basis information will be read. The file will usually have been
output previously as a Dump File. The file will not be accessed if an Old Basis File or an Insert File is
specified.

Elastic Mode – Integer i Default ¼ 1

This argument determines if (and when) elastic mode is to be started. Three elastic modes are available as
follows:

i Meaning
0 Elastic mode is never invoked. nag_opt_sparse_convex_qp_solve (e04nqc) will terminate as soon

as infeasibility is detected. There may be other points with significantly smaller sums of
infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be infeasible (the default). If the
constraints are infeasible, continue in elastic mode with the composite objective determined by the
values of Elastic Objective and Elastic Weight.

2 The iterations start and remain in elastic mode. This option allows you to minimize the composite
objective function directly without first performing Phase 1 iterations.

The success of this option will depend critically on your choice of Elastic Weight. If Elastic
Weight is sufficiently large and the constraints are feasible, the minimizer of the composite
objective and the solution of the original problem are identical. However, if the Elastic Weight is
not sufficiently large, the minimizer of the composite function may be infeasible, even though a
feasible point for the constraints may exist.

Elastic Objective – Integer i Default ¼ 1

This option determines the form of the composite objective. Three types of composite objectives are
available.

i Meaning
0 Include only the true objective f xð Þ in the composite objective. This option sets � ¼ 0 in the

composite objective and will allow nag_opt_sparse_convex_qp_solve (e04nqc) to ignore the elastic
bounds and find a solution that minimizes f subject to the non-elastic constraints. This option is
useful if there are some ‘soft’ constraints that you would like to ignore if the constraints are
infeasible.

1 Use a composite objective defined with � determined by the value of Elastic Weight. This value
is intended to be used in conjunction with Elastic Mode ¼ 2.

2 Include only the elastic variables in the composite objective. The elastics are weighted by � ¼ 1.
This choice minimizes the violations of the elastic variables at the expense of possibly increasing
the true objective. This option can be used to find a point that minimizes the sum of the violations
of a subset of constraints determined by the argument helast.

Elastic Weight – double r Default ¼ 1:0

This keyword defines the value of � in the composite objective.

At each iteration of elastic mode, the composite objective is defined to be

minimize � f xð Þ þ � (sum of infeasibilities);

where � ¼ 1 for Minimize, � ¼ �1 for Maximize, and f is the current objective value.

Note that the effect of � is not disabled once a feasible iterate is obtained.

Expand Frequency – Integer i Default ¼ 10000

This option is part of an anti-cycling procedure (see Section 10.4) designed to allow progress even on
highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional argument Feasibility Tolerance is �. Over a period
of i iterations, the feasibility tolerance actually used by nag_opt_sparse_convex_qp_solve (e04nqc) (i.e.,
the working feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).
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Increasing the value of i helps reduce the number of slightly infeasible nonbasic variables (most of which
are eliminated during the resetting procedure). However, it also diminishes the freedom to choose a large
pivot element (see Pivot Tolerance below).

If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no anti-cycling
procedure is invoked.

Factorization Frequency – Integer i Default ¼ 100 LPð Þ or 50 QPð Þ
If i > 0, at most i basis changes will occur between factorizations of the basis matrix. For LP problems,
the basis factors are usually updated at every iteration. Higher values of i may be more efficient on
problems that are extremely sparse and well scaled. For QP problems, fewer basis updates will occur as
the solution is approached. The number of iterations between basis factorizations will therefore increase.
During these iterations a test is made regularly according to the value of Check Frequency to ensure that
the linear constraints Ax� s ¼ 0 are satisfied. If necessary, the basis will be refactorized before the limit
of i updates is reached. If i � 0, the default value is used.

Feasibility Tolerance – double r Default ¼ 10�6

A feasible problem is one in which all variables satisfy their upper and lower bounds to within the absolute
tolerance r. (This includes slack variables. Hence, the general constraints are also satisfied to within r.)

nag_opt_sparse_convex_qp_solve (e04nqc) attempts to find a feasible solution before optimizing the
objective function. If the sum of infeasibilities cannot be reduced to zero, the problem is assumed to be
infeasible. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be
appropriate to raise r by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

Note that if sinf is not small and you have not asked nag_opt_sparse_convex_qp_solve (e04nqc) to
minimize the violations of the elastic variables (i.e., you have not specified Elastic Objective ¼ 2, there
may be other points that have a significantly smaller sum of infeasibilities.
nag_opt_sparse_convex_qp_solve (e04nqc) will not attempt to find the solution that minimizes the sum
unless Elastic Objective ¼ 2.

If the constraints and variables have been scaled (see Scale Option below), then feasibility is defined in
terms of the scaled problem (since it is more likely to be meaningful).

Infinite Bound Size – double r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

Iteration Limit – Integer i Default ¼ max 10000;mð Þ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. Setting i ¼ 0 and
Print Level > 0 means that the workspace needed to start solving the problem will be computed and
printed, but no iterations will be performed. If i < 0, the default value is used.

List Default ¼ Nolist
Nolist

Normally each optional argument specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

LU Factor Tolerance – double r1 Default ¼ 3:99
LU Update Tolerance – double r2 Default ¼ 3:99

The values of r1 and r2 affect the stability and sparsity of the basis factorization B ¼ LU , during
refactorization and updates respectively. The lower triangular matrix L is a product of matrices of the form

1
	 1

� �
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where the multipliers 	 will satisfy 	j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. They must satisfy r1, r2 � 1:0.

For large and relatively dense problems, r1 ¼ 10:0 or 5:0 (say) may give a useful improvement in stability
without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce r1 and/or r2 in order
to achieve stability. For example, if the columns of A include a sub-matrix of the form

4 �1
�1 4 �1

�1 4 �1
: : :

�1 4 �1
�1 4

0
BBBBBB@

1
CCCCCCA
,

one should set both r1 and r2 to values in the range 1:0 � ri < 4:0.

LU Singularity Tolerance – double r Default ¼ �0:67

If r > 0, r defines the singularity tolerance used to guard against ill-conditioned basis matrices. Whenever
the basis is refactorized, the diagonal elements of U are tested as follows. If ujj

		 		 � r or

ujj
		 		 < r �max

i
uij
		 		, the jth column of the basis is replaced by the corresponding slack variable. If

r � 0, the default value is used.

Maximize Default ¼ Minimize
Minimize

This option specifies the required direction of the optimization. It applies to both linear and nonlinear
terms (if any) in the objective function. Note that if two problems are the same except that one minimizes
f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs of the dual variables �i
and the reduced gradients dj (see Section 10.3) will be reversed.

New Basis File – Nag_FileID i1 Default ¼ 0
Backup Basis File – Nag_FileID i2 Default ¼ 0
Save Frequency – Integer i3 Default ¼ 100

(See Section 11.1 for a description of Nag_FileID.)

New Basis File and Backup Basis File sometimes referred to as basis maps. They contain the most
compact representation of the state of each variable. They are intended for restarting the solution of a
problem at a point that was reached by an earlier run. For non-trivial problems, it is advisable to save
basis maps at the end of a run, in order to restart the run if necessary.

If New Basis File > 0, a basis map will be saved on file New Basis File every i3th iteration, where i3 is
the Save Frequency. The first record of the file will contain the word PROCEEDING if the run is still in
progress. A basis map will also be saved at the end of a run, with some other word indicating the final
solution status.

If Backup Basis File > 0, Backup Basis File is intended as a safeguard against losing the results of a
long run. Suppose that a New Basis File is being saved every 100 (Save Frequency) iterations, and that
nag_opt_sparse_convex_qp_solve (e04nqc) is about to save such a basis at iteration 2000. It is
conceivable that the run may be interrupted during the next few milliseconds (in the middle of the save).
In this case the basis file will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a New Basis File and a Backup Basis File may be specified. The following
would be suitable for the above example:

Backup Basis FileID1
New Basis FileID2

where FileID1 and FileID2 are returned by nag_open_file (x04acc).
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The current basis will then be saved every 100 iterations, first on FileID2 and then immediately on
FileID1. If the run is interrupted at iteration 2000 during the save on FileID2, there will still be a usable
basis on FileID1 (corresponding to iteration 1900).

Note that a new basis will be saved in New Basis File at the end of a run if it terminates normally, but it
will not be saved in Backup Basis File. In the above example, if an optimum solution is found at iteration
2050 (or if the iteration limit is 2050), the final basis on FileID2 will correspond to iteration 2050, but the
last basis saved on FileID1 will be the one for iteration 2000.

A full description of information recorded in New Basis File and Backup Basis File is given in Gill et al.
(1999).

Old Basis File – Nag_FileID i Default ¼ 0

(See Section 11.1 for a description of Nag_FileID.)

If Old Basis File > 0, the basis maps information will be obtained from the file associated with ID i. A
full description of information recorded in New Basis File and Backup Basis File is given in Gill et al.
(1999). The file will usually have been output previously as a New Basis File or Backup Basis File.

The file will not be acceptable if the number of rows or columns in the problem has been altered.

Optimality Tolerance – double r Default ¼ 10�6

This is used to judge the size of the reduced gradients dj ¼ gj � �aj, where gj is the jth component of the
gradient, aj is the associated column of the constraint matrix A �Ið Þ, and � is the set of dual variables.

By construction, the reduced gradients for basic variables are always zero. The problem will be declared
optimal if the reduced gradients for nonbasic variables at their lower or upper bounds satisfy

dj= �k k � �r or dj= �k k � r

respectively, and if dj
		 		= �k k � r for superbasic variables.

In the above tests, �k k is a measure of the size of the dual variables. It is included to make the tests
independent of a scale factor on the objective function.

The quantity �k k actually used is defined by

�k k ¼ max �
ffiffiffiffi
m

p
; 1

� �
, where � ¼

Xm

i¼1
�ij jj

so that only large scale factors are allowed for.

If the objective is scaled down to be very small, the optimality test reduces to comparing dj against 0:01r.

Partial Price – Integer i Default ¼ 10 LPð Þ or 1 QPð Þ
This option is recommended for large FP or LP problems that have significantly more variables than
constraints (i.e., n � m). It reduces the work required for each pricing operation (i.e., when a nonbasic
variable is selected to enter the basis). If i ¼ 1, all columns of the constraint matrix A �Ið Þ are
searched. If i > 1, A and I are partitioned to give i roughly equal segments Aj;Kj, for j ¼ 1; 2; . . . ; p
(modulo p). If the previous pricing search was successful on Aj�1;Kj�1, the next search begins on the
segments Aj;Kj. If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to enter the basis. If nothing is
found, the search continues on the next segments Ajþ1;Kjþ1, and so on. If i � 0, the default value is used.

Pivot Tolerance – double r Default ¼ �0:67

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause the
basis to become almost singular.

When x changes to xþ �p for some search direction p, a ‘ratio test’ is used to determine which component
of x reaches an upper or lower bound first. The corresponding element of p is called the pivot element.

For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance r.
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It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Feasibility Tolerance (say t) provides some freedom to maximize the pivot element and thereby improve
numerical stability. Excessively small values of t should therefore not be specified.

To a lesser extent, the Expand Frequency (say f ) also provides some freedom to maximize the pivot
element. Excessively large values of f should therefore not be specified.

Print File – Nag_FileID i Default ¼ 0

(See Section 11.1 for a description of Nag_FileID.)

If Print File > 0, the following information is output to Print File during the solution of each problem:

– a listing of the optional arguments;

– some statistics about the problem;

– the amount of storage available for the LU factorization of the basis matrix;

– notes about the initial basis resulting from a Crash procedure or a basis file;

– the iteration log;

– basis factorization statistics;

– the exit fail condition and some statistics about the solution obtained;

– the printed solution, if requested.

The last four items are described in Sections 8 and 12. Further brief output may be directed to the
Summary File.

Print Frequency – Integer i Default ¼ 100

If i > 0, one line of the iteration log will be printed every ith iteration. A value such as i ¼ 10 is
suggested for those interested only in the final solution.

Print Level – Integer i Default ¼ 1

This controls the amount of printing produced by nag_opt_sparse_convex_qp_solve (e04nqc) as follows.

i Meaning
0 No output except error messages. If you want to suppress all output, set Print File ¼ 0.

¼ 1 The set of selected options, problem statistics, summary of the scaling procedure, information
about the initial basis resulting from a crash or a basis file. a single line of output at each iteration
(controlled by Print Frequency), and the exit condition with a summary of the final solution.

� 10 Basis factorization statistics.

Punch File – Nag_FileID i1 Default ¼ 0
Insert File – Nag_FileID i2 Default ¼ 0

(See Section 11.1 for a description of Nag_FileID.)

These files provide compatibility with commercial mathematical programming systems. The Punch File
from a previous run may be used as an Insert File for a later run on the same problem. A full description
of information recorded in Insert File and Punch File is given in Gill et al. (1999).

If Insert File > 0, the final solution obtained will be output to file Punch File. For linear programs, this
format is compatible with various commercial systems.

If Punch File > 0, the Insert File containing basis information will be read. The file will usually have
been output previously as a Punch File. The file will not be accessed if Old Basis File is specified.

Scale Option – Integer i Default ¼ 2
Scale Tolerance – double r Default ¼ 0:9

Three scale options are available as follows:
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i Meaning
0 No scaling. This is recommended if it is known that x and the constraint matrix never have very

large elements (say, larger than 1000).
1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix

coefficients as close as possible to 1.0 (see Fourer (1982)). This will sometimes improve the
performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional
scaling is performed that may be helpful if the right-hand side b or the solution x is large. This
takes into account columns of A �Ið Þ that are fixed or have positive lower bounds or negative
upper bounds.

Scale Tolerance affects how many passes might be needed through the constraint matrix. On each pass,
the scaling procedure computes the ratio of the largest and smallest non-zero coefficients in each column:


j ¼ max
j

aij
		 		=min

i
aij
		 		 aij 6¼ 0

� �
.

If max 
j is less than r times its previous value, another scaling pass is performed to adjust the row and
column scales. Raising r from 0.9 to 0.99 (say) usually increases the number of scaling passes through A.
At most 10 passes are made.

Solution File – Nag_FileID i Default ¼ 0

(See Section 11.1 for a description of Nag_FileID.)

If Solution File > 0, the final solution will be output to file Solution File (whether optimal or not).

To see more significant digits in the printed solution, it will sometimes be useful to make Solution File
refer to the system Print File.

Summary File – Nag_FileID i1 Default ¼ 0
Summary Frequency – Integer i2 Default ¼ 100

(See Section 11.1 for a description of Nag_FileID.)

If Summary File > 0, a brief log will be output to file Summary File, including one line of information
every i2th iteration. In an interactive environment, it is useful to direct this output to the terminal, to allow
a run to be monitored on-line. (If something looks wrong, the run can be manually terminated.) Further
details are given in Section 12.

Superbasics Limit – Integer i Default ¼ min 500; nH þ 1; nð Þ
This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly larger
than the ‘number of degrees of freedom’ expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom. (The number of
variables lying strictly between their bounds is no more than m, the number of general constraints.) The
default value of i is therefore 1.

For quadratic problems, the number of degrees of freedom is often called the ‘number of independent
variables’.

Normally, i need not be greater than ncolhþ 1, where ncolh is the number of leading non-zero columns of
H , nH .

For many problems, i may be considerably smaller than ncolh. This will save storage if ncolh is very
large.

Suppress Parameters

Normally nag_opt_sparse_convex_qp_solve (e04nqc) prints the options file as it is being read, and then
prints a complete list of the available keywords and their final values. The Suppress Parameters option
tells nag_opt_sparse_convex_qp_solve (e04nqc) not to print the full list.
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Timing Level – Integer i Default ¼ 0

If i > 0, some timing information will be output to the Print File.

Unbounded Step Size – double r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive-
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

12 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by nag_opt_sparse_convex_qp_solve (e04nqc). (See also the description of the
optional arguments Print File and Print Level in Section 11.2.) The level of printed output can be
controlled by you.

When Print Level > 20 and Print File > 0, the following lines of intermediate printout ( < 120
characters) are produced on the unit number specified by Print File whenever the matrix B or

BS ¼ B Sð ÞT is factorized. Gaussian elimination is used to compute an LU factorization of B or BS,

where PLPT is a lower triangular matrix and PUQ is an upper triangular matrix for some permutation
matrices P and Q. The factorization is stabilized in the manner described under the option LU Factor
Tolerance (see Section 11.2).

Label Description

Factorize is the factorization count.

Demand is a code giving the reason for the present factorization as follows:

Code Meaning
0 First LU factorization.
1 The number of updates reached the value of the optional argument

Factorization Frequency (see Section 11.2).
2 The number of non-zeros in the updated factors has increased significantly.
7 Not enough storage to update factors.
10 Row residuals too large (see the description for the option Check

Frequency in Section 11.2).
11 Ill-conditioning has caused inconsistent results.

Iteration is the iteration count.

Infeas the number of infeasibilities at the start of the previous iteration.

Objective if Infeas > 0, this is the Sum of Infeasibilities at the start of the previous iteration.

Nonlinear is the number of nonlinear variables in the current basis B (not printed if BS is
factorized). If Infeas ¼ 0, this is the value of the objective function after the
previous iteration.

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of non-zeros in B (not printed if BS is factorized)

Density is the percentage non-zero density of B (not printed if BS is factorized). More
precisely, Density ¼ 100� Elems= m� mð Þ, where m is the number of rows in the
problem m ¼ Linearþ Slacksð Þ.

Compressns is the number of times the data structure holding the partially factorized matrix
needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero.

Merit is the average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be c� 1ð Þ r � 1ð Þ, where c and r are the
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number of non-zeros in the column and row containing the element at the time it is
selected to be the next diagonal. Merit is the average of m such quantities. It gives
an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of non-zeros in L.

lenU is the number of non-zeros in U .

Increase is the percentage increase in the number of non-zeros in L and U relative to the
number of non-zeros in B. More precisely, Increase ¼ 100� lenLþ lenU�ð
ElemsÞ=Elems.

m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the maximum subdiagonal element in the columns of L. This will not exceed the
value of the optional argument LU Factor Tolerance (see Section 11.2).

Bmax is the maximum non-zero element in B (not printed if BS is factorized).

BSmax is the maximum non-zero element in BS (not printed if B is factorized).

Umax is the maximum non-zero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of U without modification. Elements in such rows will not
contribute to Umax. If the basis is strictly triangular then none of the elements of B
will contribute and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several orders of
magnitude larger, it may be advisable to reset the LU Factor Tolerance to some
value nearer unity.

Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ (not printed if BS is
factorized).

Growth is the value of the ratio Umax/Bmax, which should not be too large.

Providing Lmax is not large (say, < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the basis
is nearly singular and some numerical difficulties might occur. (However, an effort
is made to avoid near-singularity by using slacks to replace columns of B that would
have made Umin extremely small and the modified basis is refactorized.)

Growth is not printed if BS is factorized.

Lt is the number of triangular columns of B at the left of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns of B have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized has reached 0.6.

When Print Level > 20 and Print File > 0, the following lines of intermediate printout ( < 120
characters) are produced on the unit number specified by Print File whenever start ¼ Nag_Cold (see
Section 5). They refer to the number of columns selected by the Crash procedure during each of several
passes through A, whilst searching for a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.
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Free cols is the number of free columns in the basis, including those whose bounds are rather
far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., hs½j� ¼ 3 for some j � n). It
will be a subset of the columns for which hs½j� ¼ 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis (to make it a non-singular triangle).

When Print Level > 20 and Print File > 0, the following lines of intermediate printout ( < 80 characters)
are produced on the unit number specified by Print File. They refer to the elements of the names array
(see Section 5).

Label Description

Name gives the name for the problem (blank if none).

Status gives the exit status for the problem (i.e., Optimal soln, Weak soln, Unbounded,
Infeasible, Excess itns, Error condn or Feasble soln) followed by details
of the direction of the optimization (i.e., (Min) or (Max)).

Objective gives the name of the free row for the problem (blank if none).

RHS gives the name of the constraint right-hand side for the problem (blank if none).

Ranges gives the name of the ranges for the problem (blank if none).

Bounds gives the name of the bounds for the problem (blank if none).

At the end of a run, the final solution will be output to the Print File. Some header information appears
first to identify the problem and the final state of the optimization procedure. A ROWS section and a
COLUMNS section then follow, giving one line of information for each row and column.

The ROWS section

The general constraints take the form l � Ax � u. The ith constraint is therefore of the

1 � �Ti x � �,

where �i is the ith row of A.

Internally, the constraints take the form Ax� s ¼ 0, where s is the set of slack variables (which happen to
satisfy the bounds l � s � u). For the ith constraint it is the slack variable si that is directly available, and
it is sometimes convenient to refer to its state. A ‘.’ is printed for any numerical value that is exactly zero.

Label Description

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of vi.

State the state of vi (the state of si relative to the bounds � and �. The various states
possible are as follows:

LL si is nonbasic at its lower limit, �.

UL si is nonbasic at its upper limit, �.

EQ si is nonbasic and fixed at the value � ¼ �.

FR si is nonbasic and currently zero, even though it is free to take any value
between its bounds � and �.

BS si is basic.

SBS si is superbasic.
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A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional argument Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange-multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional argument Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
argument Optimality Tolerance (see Section 11.2), the solution would not be
declared optimal because the reduced gradient for the variable would not be
considered negligible.

Activity is the value of vi at the final iterate (the ith element of ATx).

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound specified for the variable si. None indicates that
bl½j� � �bigbnd.

Upper Bound is �, the upper bound specified for the variable si. None indicates that
bu½j� � bigbnd.

Dual Activity is the value of the dual variable �i (the Lagrange-multiplier for vi; see Section 10.3).
For FP problems, �i is set to zero.

i gives the index i of the ith row.

The COLUMNS section

Let the jth component of x be the variable xj and assume that it satisfies the bounds � � xj � �. A ‘.’ is
printed for any numerical value that is exactly zero.

Label Description

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State the state of xj relative to the bounds � and �. The various states possible are as
follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.

FR xj is nonbasic and currently zero, even though it is free to take any value
between its bounds � and �.
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BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional argument Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange-multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional argument Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
argument Optimality Tolerance (see Section 11.2), the solution would not be
declared optimal because the reduced gradient for the variable would not be
considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound is the lower bound specified for the variable. None indicates that bl½j� � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that bu½j� � bigbnd.

Reduced Gradnt is the value of dj at the final iterate (see Section 10.3). For FP problems, dj is set to
zero.

m + j is the value of mþ j.

Note: if two problems are the same except that one minimizes f xð Þ and the other maximizes �f xð Þ, their
solutions will be the same but the signs of the dual variables �i and the reduced gradients dj will be
reversed.

The SOLUTION file

If Solution File > 0, the information contained in a printed solution may also be output to the relevant file

(which may be the Print File if so desired). Infinite Upper and Lower limits appear as 1020rather than
None. Again, the maximum line length is 111 characters.

A Solution File is intended to be read from disk by a self-contained program that extracts and saves
certain values as required for possible further computation. Typically the first 14 lines would be ignored.
The end of the ROWS section is marked by a line that starts with a 1 and is otherwise blank. If this and
the next 4 lines are skipped, the COLUMNS section can then be read under the same format.

The SUMMARY file

If Summary File > 0, certain brief information will be output to file. A disk file should be used to retain
a concise log of each run if desired. (A Summary File is more easily perused than the associated Print
File).

The following information is included:

1. The Begin line from the optional arguments file, if used;
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2. The basis file loaded, if any;

3. The status of the solution after each basis factorization (whether feasible; the objective value; the
number of function calls so far);

4. The same information every kth iteration, where k is the specified Summary Frequency (see
Section 11.2);

5. Warnings and error messages;

6. The exit condition and a summary of the final solution.

Item 4. is preceded by a blank line, but item 5. is not.

The meaning of the printout for linear constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, names½j� 1� replaced by names½nþ j� 1�, bl½j� 1�
and bu½j� 1� are replaced by bl½nþ j� 1� and bu½nþ j� 1� respectively, and with the following change
in the heading:

Constrnt gives the name of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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